(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0, z1) → U12(tt, activate(z0), activate(z1))
U12(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
plus(z0, 0) → z0
plus(z0, s(z1)) → U11(tt, z1, z0)
activate(z0) → z0
Tuples:
U11'(tt, z0, z1) → c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
U12'(tt, z0, z1) → c1(PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
PLUS(z0, s(z1)) → c3(U11'(tt, z1, z0))
S tuples:
U11'(tt, z0, z1) → c(U12'(tt, activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
U12'(tt, z0, z1) → c1(PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
PLUS(z0, s(z1)) → c3(U11'(tt, z1, z0))
K tuples:none
Defined Rule Symbols:
U11, U12, plus, activate
Defined Pair Symbols:
U11', U12', PLUS
Compound Symbols:
c, c1, c3
(3) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0, z1) → U12(tt, activate(z0), activate(z1))
U12(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
plus(z0, 0) → z0
plus(z0, s(z1)) → U11(tt, z1, z0)
activate(z0) → z0
Tuples:
PLUS(z0, s(z1)) → c3(U11'(tt, z1, z0))
U11'(tt, z0, z1) → c(U12'(tt, activate(z0), activate(z1)))
U12'(tt, z0, z1) → c1(PLUS(activate(z1), activate(z0)))
S tuples:
PLUS(z0, s(z1)) → c3(U11'(tt, z1, z0))
U11'(tt, z0, z1) → c(U12'(tt, activate(z0), activate(z1)))
U12'(tt, z0, z1) → c1(PLUS(activate(z1), activate(z0)))
K tuples:none
Defined Rule Symbols:
U11, U12, plus, activate
Defined Pair Symbols:
PLUS, U11', U12'
Compound Symbols:
c3, c, c1
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(z0, s(z1)) → c3(U11'(tt, z1, z0))
We considered the (Usable) Rules:
activate(z0) → z0
And the Tuples:
PLUS(z0, s(z1)) → c3(U11'(tt, z1, z0))
U11'(tt, z0, z1) → c(U12'(tt, activate(z0), activate(z1)))
U12'(tt, z0, z1) → c1(PLUS(activate(z1), activate(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(PLUS(x1, x2)) = [4]x2
POL(U11'(x1, x2, x3)) = [2] + [4]x1 + [4]x2
POL(U12'(x1, x2, x3)) = [4]x2
POL(activate(x1)) = x1
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c3(x1)) = x1
POL(s(x1)) = [3] + x1
POL(tt) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0, z1) → U12(tt, activate(z0), activate(z1))
U12(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
plus(z0, 0) → z0
plus(z0, s(z1)) → U11(tt, z1, z0)
activate(z0) → z0
Tuples:
PLUS(z0, s(z1)) → c3(U11'(tt, z1, z0))
U11'(tt, z0, z1) → c(U12'(tt, activate(z0), activate(z1)))
U12'(tt, z0, z1) → c1(PLUS(activate(z1), activate(z0)))
S tuples:
U11'(tt, z0, z1) → c(U12'(tt, activate(z0), activate(z1)))
U12'(tt, z0, z1) → c1(PLUS(activate(z1), activate(z0)))
K tuples:
PLUS(z0, s(z1)) → c3(U11'(tt, z1, z0))
Defined Rule Symbols:
U11, U12, plus, activate
Defined Pair Symbols:
PLUS, U11', U12'
Compound Symbols:
c3, c, c1
(7) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
U11'(tt, z0, z1) → c(U12'(tt, activate(z0), activate(z1)))
U12'(tt, z0, z1) → c1(PLUS(activate(z1), activate(z0)))
U12'(tt, z0, z1) → c1(PLUS(activate(z1), activate(z0)))
PLUS(z0, s(z1)) → c3(U11'(tt, z1, z0))
Now S is empty
(8) BOUNDS(O(1), O(1))